对数的运算法则

网上有关“对数的运算法则”话题很是火热,小编也是针对对数的运算法则寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题 ,希望能够帮助到您。

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3 、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1 、[a^m]×[a^n]=a^(m+n) 同底数幂相乘,底数不变,指数相加

2、[a^m]÷[a^n]=a^(m-n) 同底数幂相除,底数不变,指数相减

3、[a^m]^n=a^(mn) 幂的乘方,底数不变,指数相乘?

4 、[ab]^m=(a^m)×(a^m) 积的乘方,等于各个因式分别乘方,再把所得的幂相乘

扩展资料:

对数的历史:

16、17世纪之交,随着天文、航海 、工程、贸易以及军事的发展,改进数字计算方法成了当务之急 。约翰·纳皮尔(J.Napier ,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。

恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就 ,伽利略也说过:“给我空间 、时间及对数,我就可以创造一个宇宙。 ”

对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉 ,而且德国数学家斯蒂弗尔(M.Stifel,约1487—1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:

同时该种关系之间存在的运算性质(即上面一行数字的乘 、除、乘方、开方对应于下面一行数字的加 、减、乘、除)也已广为人知 。经过对运算体系的多年研究,纳皮尔在1614年出版了《奇妙的对数定律说明书》 ,书中借助运动学 ,用几何术语阐述了对数方法。

百度百科-指数运算法则

百度百科-对数运算法则

对数的计算和公式, 对数的计算公式和计算方法[最好有例题及计算步骤].

定义:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1 、a^(log(a)(b))=b

2、log(a)(MN)=log(a)(M)+log(a)(N);

3、log(a)(M÷N)=log(a)(M)-log(a)(N);

4 、log(a)(M^n)=nlog(a)(M)

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又因为指数函数是单调函数 ,所以

log(a)(MN) = log(a)(M) + log(a)(N)

3 、与(2)类似处理

MN=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

4、与(2)类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)

由基本性质4可得

log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}

再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)

函数图象

[编辑本段]

1.对数函数的图象都过(1,0)点.

2.对于y=log(a)(n)函数,

①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.

②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.

3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.

性质一:换底公式

log(a)(N)=log(b)(N)÷log(b)(a)

推导如下:

N = a^[log(a)(N)]

a = b^[log(b)(a)]

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

公式二:log(a)(b)=1/log(b)(a)

证明如下:

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数

log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1

利用对数的换底公式 ,计算 。

log2 5 ×log 5 4 =(lg5/lg2) * (2lg2/lg5)=2

log2 3×log3 4×log4 5×log5 6×log6 7×log7 8

=(lg3/lg2) * (2lg2/lg3)*(lg5/2lg2) * (lg6/lg5)*(lg7/lg6) * (3lg2/lg7)

=2*(3/2)

=3

自然对数的运算法则? 和公式?

①loga(MN)=logaM+logaN; ②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m ,e=2.718281828…为自然对数 的底。定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2 、log(a)(MN)=log(a)(M)+log(a)(N); 3 、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 5、log(a^n)M=1/nlog(a)(M) 推导: 1 、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数 ,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4 、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x) ,e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]

对数的运算公式~~~?

错了 。。。

log(MN)=log(M)+log(N)

你那个公式应该是没有的 。 。。

1对数的概念

如果a(a>0 ,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数 ,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数 ,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(2)logaMN=logaM-logaN.

(3)logaMn=nlogaM (n∈R).

问:①公式中为什么要加条件a>0,a≠1 ,M>0,N>0?

②logaan=? (n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

b—

N—a—对数的底数

b—

N—运

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

logaMn=(n∈R)

(a>0,a≠1,M>0,N>0)

难点疑点突破

对数定义中,为什么要规定a>0,,且a≠1?

理由如下:

①若a<0 ,则N的某些值不存在,例如log-28?

②若a=0,则N≠0时b不存在;N=0时b不惟一 ,可以为任何正数?

③若a=1时 ,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数?

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数的计算

原式=3^log3^2(底数)^6^2=3^2*1/2*log^3(底数)^6=6

原式=log2的平方(底数)^2的三次方-log3的-2次方(底数)^3

=3/2log2(底数)^2-(-1/2)log3(底数)^3

=3/2+1/2

=2

原式= - 5lg4/lg9+lg(32/9)/lg3-5log5(3)-[(1/4)^3]^(2/3)

= - 5lg2/lg3+[lg(1/9)+lg32]/lg3-5log5(3)-1/16

= - lg32/lg3+lg32/lg3-[lg3^(-2)]/lg3-5log5(3)-1/16

= -2-1/16--5log5(3)

=- 33/16--5log5(3)

计算机上的log都是默认以10为底的对数 ,因此log100 = 2,log1000 = 3。如果需要计算以非10为底的对数,要使用换底公式 ,比如想计算以7为底12的对数,在计算器上的操作应该是 (log12) / (log7)

求对数的公式

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N) / log(b)(a)

性质二

log(a^n)(b^m)=m/n*[log(a)(b)]

关于“对数的运算法则”这个话题的介绍,今天小编就给大家分享完了 ,如果对你有所帮助请保持对本站的关注!

(27)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 织梦的头像
    织梦 2025年12月08日

    我是乐信号的签约作者“织梦”

  • 织梦
    织梦 2025年12月08日

    本文概览:网上有关“对数的运算法则”话题很是火热,小编也是针对对数的运算法则寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。对数的运算法则:1、l...

  • 织梦
    用户120803 2025年12月08日

    文章不错《对数的运算法则》内容很有帮助

联系我们:

邮件:乐信号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信