噬菌体进入细菌内后离开细菌会不会死亡

网上有关“噬菌体进入细菌内后离开细菌会不会死亡”话题很是火热,小编也是针对噬菌体进入细菌内后离开细菌会不会死亡寻找了一些与之相关的一些信息进行分析 ,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

不会的。噬菌体是病毒的一类,只能在活细胞能生存 。当它们离开活细胞的时候 ,会变成结晶体,进入休眠状态。但它们一旦再次到了活细胞内时,就会把蛋白质外壳去掉 ,就留DNA在活细胞内,继续繁殖

人类的DNA可以通过握手或拥抱等接触传播吗?

您是要完整版本的吗?——那我就复制下好了。

自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题 ,人们开始了对核酸和蛋白质的研究 。

早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895) ,他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣 ,因为他知道脓血是那些为了保卫人体健康,与病菌"'作战"而战死的白细胞和被杀死的人体细胞的"遗体"。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解 ,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用 。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验 ,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为 "核素",后来人们发现它呈酸性,因此改叫"核酸" 。从此人们对核酸进行了一系列卓有成效的研究。

20世纪初 ,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的 。其中碱基有4种(腺瞟吟 、鸟嘌吟、胸腺嘧啶和胞嘧啶) ,核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA) 。

列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的 ,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸 ,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用 ,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单 ,很难设想它能在遗传过程中起什么作用 。

蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现 ,到1940年则全部被发现。

1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链 。于是 ,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此 ,那时生物界普遍倾向于认为蛋白质是遗传信息的载体 。

1928年 ,美国科学家格里菲斯(1877--1941)用一种有荚膜 、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质 ,使无荚菌转化为有荚菌 。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有荚菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌 ,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。

1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子" ,并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA 。但这个发现没有得到广泛的承认 ,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用 。 美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小 ,只有用电子显微镜才能看到它 。它像一个小蝌蚪 ,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时 ,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面 ,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体 ,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌 。

1952年 ,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌 ,然后加以分离 ,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖 。这个实验证明DNA有传递遗传信息的功能 ,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。

几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果 。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同 ,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内 ,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验 ,终于得出了不同于列文的结果 。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等 ,鸟嘌吟G与胞嘧啶C数量相等 。说明DNA分子中的碱基A 与T 、G与C是配对存在的 ,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。

1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型 ,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。

沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习 。当时 ,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练 ,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长 ,善于用他人的思想来充实自己 。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位 ,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构 ,他到丹麦哥本哈根实验室学习化学 。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此 ,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克

 。 克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年 ,他阅读了《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习 ,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了 。当时克里克比沃森大12岁,还没有取得博士学位 。但他们谈得很投机 ,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时 ,讨论学术问题 。两个人互相补充 ,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构 。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点 ,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中 ,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往 。

1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发 ,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底 ,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败 。 有一天 ,沃森又到国王学院威尔金斯实验室 ,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来 、心跳也加快了,因为这种图像比以前得到的"A型"简单得多 ,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。

克里克请数学家帮助计算 ,结果表明源吟有吸引嘧啶的趋势 。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念 。

他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式 ,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。

有一次 ,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状 ,于是精神为之大振 。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此 ,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了 。那么,两条链的骨架一定是方向相反的。

经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到 ,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯 ,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对 。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。

下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯 。不到两天工夫 ,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖 ,而富兰克林因患癌症于1958年病逝而未被授予该奖。

20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的 。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm 。

DNA双螺旋结构被发现后,极大地震动了学术界 ,启发了人们的思想。从此 ,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究 。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段 ,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的 。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分 ,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的 。在此基础上相继产生了基因工程、酶工程 、发酵工程 、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展 ,愈来愈显示出它将要上升为带头学科的趋势。

DNA是活性物质吗?加热能杀死吗?为什么格里菲斯的实验中细菌被加加热杀死了,可DNA还能转化?

先介绍一下自己,我是法医阿一,现在的主要工作之一就是检验DNA 。

那么回到这个问题 ,从你给出的和信息来看,我理解的你想表达的问题大约是握手或拥抱会不会留下DNA到另一个人的体表?

毕竟DNA存在细胞核内,不可能你摸一下 ,你脱落的细胞中的DNA就释放出来还进入另一个人的体内。

那么你握手或是触摸的情况下 ,会不会留下DNA物质在另一人身上呢?答案是:会。

普通人体,每天都会发生代谢,大约几十上百万的皮肤体表细胞会脱落 ,对,就是类似于死皮,头皮屑 ,只是更小,更细微 。然后当你用手接触其它地方时,自然你的脱落的细胞就会留在你接触的物体上面 。

而DNA几乎存在于大多数体细胞中 ,细胞留下来了,DNA物质也就留下来了。这种DNA,通常被称为接触性DNA ,或脱落细胞DNA,这类DNA的检验方法已经采用多年。你只要搜搜相关论文就知道,十年前就有报道了 ,近年来已经可以说是一种相对成熟的技术了 。

当然有个有意思的地方就在于 ,不是说细胞和DNA存在就一定能检验的出来。因为这种检验还是有一定不确定性,影响因素主要是提取,污染 ,以及抑制物的存在。所以,接触性DNA是肯定存在,但检出率却不是百分百 。

欢迎关注法医阿一。

如果真的这样 ,那岂不是握手都会怀孕?接触只能使人体表面沾上其它人的基因,而这些基因不会参与人体生理活动,更不会随人类生殖过程传播 ,仅有较低几率导致疾病传播。

人体皮肤表面的细胞也是在不断新陈代谢的,而上皮细胞由于摩擦等因素,更新换代的频率非常高 ,人的一生中,总共约有18千克的皮肤要以碎屑的形式脱落掉 。大约经过27天,全身的表皮就会全部换上一件“新衣 ”。而握手等直接接触的人类交流形式 ,可能导致人体表面的皮屑、毛发等粘在别人身上 ,这些东西中都有人类基因(基因是有生理功能的DNA片段,基因与DNA不能划等号),也可能有较为完整的DNA。但是人类细胞是真核细胞 ,DNA的转录和翻译分别发生在细胞核和细胞质中,因此皮屑等人体脱落组织中的DNA不能发挥生物学作用的,只能在人的活动中脱落 ,更不会参与其他人的人体生理活动,不会随着人类的繁衍传递下去,只有极少数人由于对这些生物组织有较强的敏感性 ,可能会导致过敏等不良反应 。人体脱落的生物组织碎片常被用在法医鉴定中,这些肉眼难以看到的组织碎片就可能成为犯罪分子落网的契机。

不过拥抱或者接触却有较低的可能造成疾病的传播。人体的皮肤是抵御外界有害因素侵害的最外层,就是一层物理屏障 ,由于皮肤等细胞结合紧密且较为坚硬,病原穿透的可能性也比较低,可以杜绝绝大多数病原的侵袭 ,因此握手等接触可以导致传染病传染的可能性是很低的 ,但是在皮肤有较大面积破损的情况下,接触到较多携带病原的人体脱落组织是有可能致病的,不过可能性也低得很 。很多疾病都是靠呼吸道、消化道 、体液、性、母婴等传播方式 ,因为人体有强大的免疫系统,又可以抵御很多病原的侵袭,因此疾病传播通常还需要有足够病原的暴露 ,所以日常生活中正常地接触甲乙丙肝患者 、艾滋患者的传播几率基本等于零,除非特别倒霉:自己皮肤有较大的破损,而刚好对方也有较大的破损 ,伤口上还恰好沾上了对方的新鲜血液 。而那些通过呼吸道和消化道传播的疾病爆发的几率则高一些。

人类基因相互传递的方式基本只有生殖,而这也不是传递给对方,而是通过生殖细胞的结合将基因传递给后代 ,必须有生殖细胞才会发生,日常的握手拥抱等接触中不会有这种基因传递,除非

......

作为一名生物行业的从业人员 ,这样的事件发生概率基本为零。

DNA是作为主要的遗传物质(某些病毒等遗传物质为RNA ,可以通过逆转录酶逆转录为DNA),DNA是一类核酸大分子,组成单位为脱氧核糖核苷酸(含有一个五碳糖、碱基和磷酸基团 ,核酸带负电也与这个有关,比如我们PCR电泳的时候),两条核苷酸链通过反向互补的方式行成DNA双螺旋结构 ,这一研究结果于1953年由Watson和Crick发现,也因此奠定了现代生物学的基础 。

DNA往上一级结构为核小体,通过DNA与组蛋白(H1、H2A 、H2B、H3、H4)形成的 ,DNA折叠和与组蛋白缠绕行成的具有10nm周期的重复结构。核小体是染色质最基本的结构单位,成球体状。

核小体上一级结构依次为螺线管和超螺线管,进一步将DNA的长度进行压缩 ,最终形成了我们所见的染色体 。

DNA是位于染色体上具有遗传照应的片段,染色体位于细胞核内,细胞核的结构决定了染色体的稳定性。

一般来说 ,生物 ,特别是真核生物,基因交流一般主要以生殖为平台,比如精子和卵子的结合等 ,这个时候会发生基因交流(包括携带染色体的传递)。

所以,与别人握手或拥抱能接触传播这种概率基本为零 。

当然,在这些情况下还是有可能的 ,比如对于艾滋病患者进行手术,医生手上有伤口不小心感染了,这种情况可能会发生感染 ,不过这也是基于病毒这个载体来传递的。

欢迎大家发表不同的意见~

DNA作为绝大多数生物体的遗传物质,单单在不同物体间通过接触进行转移是有可能的,因为DNA存在与绝大多数生物体的几乎所有细胞内 ,也时时刻刻有细胞从生物体表面通过一些作用而“脱落”,如人体的皮屑细胞 、头发细胞等等,但是目前为止的还不曾出现说通过握手或拥抱将DNA进行传播的案例 ,从科学的角度来说 ,DNA存在与细胞内部,只有通过细胞与细胞的相互作用,如卵细胞和精子形成受精卵 ,或病毒感染宿主细胞、抑或是基因工程技术等,这些都是存在多种条件符合才能成功的,以握手拥抱的方式来进行DNA传播不太可能。

当然 ,题者的意思是:DNA通过握手或拥抱会转移细胞,从而导致DNA的转移,可能会对一些物证鉴定产生影响 ,不知道是不是对这个有所忧虑 。即使是因为这种方式使得DNA得以转移到物证上,其比例也是相当少的,而且也不仅仅单单就凭这一证据就能做判断依据 ,都会综合考虑,做到科学合理公平公正。

那得看你怎么理解传播这个定义了。

握手时你手上的皮屑等DNA携带物会转移到别人身上 。然后……就没有然后了 。对方无法将你的DNA转移到自己身上去。即使提取出DNA,再克隆 ,那也只能转移到克隆体上。这算传播吗?

还有一个问题是人身上的细菌的DNA ,算不算人体的DNA?如果算的话当然是分分钟能传播啊 。

总之,如果你担心的是你本身罗圈腿的基因会不会“感染”握手者,那你尽可以放心。其他的 ,也不用你操心。其实对方最担心的可能是你上完厕所有没有洗手 。

DNA具有生物活性,它的生物活性表现在可以转录为RNA,RNA可以翻译为蛋白质;还表现在DNA可以从一个细胞转入另一个细胞。加热可以破坏DNA的生物活性 ,但一般不用你说的“杀死 ”这个词。至于你说的格里菲斯实验的问题,应该是破坏DNA活性的温度与杀死细菌的温度不同导致的 。

关于“噬菌体进入细菌内后离开细菌会不会死亡”这个话题的介绍,今天小编就给大家分享完了 ,如果对你有所帮助请保持对本站的关注!

(1)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 旗云飞的头像
    旗云飞 2025年12月10日

    我是乐信号的签约作者“旗云飞”

  • 旗云飞
    旗云飞 2025年12月10日

    本文概览:网上有关“噬菌体进入细菌内后离开细菌会不会死亡”话题很是火热,小编也是针对噬菌体进入细菌内后离开细菌会不会死亡寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问...

  • 旗云飞
    用户121006 2025年12月10日

    文章不错《噬菌体进入细菌内后离开细菌会不会死亡》内容很有帮助

联系我们:

邮件:乐信号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信